41-42 Расчёт магнитных цепей

6.5. Расчет неразветвленных магнитных цепей

Электрические и магнитные цепи подчиняются законам Кирхгофа. Аналогом тока в электрической цепи является магнитный поток в магнитной цепи, аналогом ЭДС – МДС, аналогом вольтамперной характеристики – вебер-амперная характеристика.

Различают два типа задач по расчету неразветвленных магнитных цепей: определение МДС по заданному магнитному потоку и определение магнитного потока по заданной МДС.

Рассмотрим первый тип задачи на примере магнитной цепи (рис. 6.4).

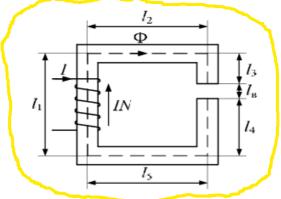


Рис. 6.4. Расчетная схема неразветвленной магнитной цепи: l_1 – l_5 – длины средней линии участков магнитопровода; $l_{\tt B}$ – длина воздушного зазора

Обычно заданы конфигурация и геометрические размеры магнитопровода (длина участков и площадь сечений), кривые намагничивания ферромагнитных материалов и магнитный поток или магнитная индукция в каком-либо сечении. Требуется определить МДС либо входящие в МДС ток или число витков.

Исходя из постоянства магнитного потока вдоль всей цепи по заданному магнитному потоку и сечениям находят значения магнитной индукции на каждом участке:

$$B_{K} = \Phi/S_{K}$$
,
T. e. $B_{1} = \Phi/S_{1}$; $B_{2} = \Phi/S_{2}$; $B_{3} = \Phi/S_{3} = B_{B} = B_{4}$; $B_{5} = \Phi/S_{5}$.

По кривым намагничивания определяют напряженность магнитного поля $H_{\rm K}$ для участков из ферромагнитного материала. Напряженность поля в воздушном зазоре $H_{\rm E}$ рассчитывают по формуле (6.7).

Искомую МДС определяют по второму закону Кирхгофа для контура вдоль средней линии магнитопровода:

$$IN = \sum H_{\kappa} l_{\kappa},$$

или

$$IN = H_1 l_1 + H_2 l_2 + H_B l_B + H_4 l_4 + H_5 l_5.$$

Второй тип задачи — определение магнитного потока по заданной МДС — принципиально сводится к многократному повторению расчетов по алгоритму первого типа задачи, построению зависимости $\Phi(IN)$ и нахождению рабочей точки. Для этого задают значения магнитного потока Φ и находят соответствующие значения IN, как в предыдущей задаче, и строят зависимость $\Phi(IN)$. По заданной МДС определяют магнитный поток.

Решение задач первого и второго типа значительно упрощается при рассмотрении неразветвленной однородной магнитной цепи. Однородная магнитная цепь содержит замкнутый ферромагнитный сердечник, имеющий по всей длине одинаковые поперечное сечение и материал.

При заданном значении магнитного потока Φ и известной площади S поперечного сечения находят магнитную индукцию:

$$B = \frac{\Phi}{S}.$$

По кривой намагничивания ферромагнитного материала B(H) определяют напряженность H.

По второму закону Кирхгофа для магнитной цепи находят МДС:

$$IN = Hl$$

где l – длина магнитопровода, подсчитанная по средней линии.

При решении задач второго типа, когда задана МДС, согласно второму закону Кирхгофа находят напряженность

$$H = \frac{IN}{l}$$
.

По кривой намагничивания ферромагнитного материала B(H) определяют магнитную индукцию B.

Магнитный поток находят из выражения

$$\Phi = BS$$
.

Пример 6.2. В сердечнике (рис. 6.1, a) в воздушном зазоре должна быть магнитная индукция B=1 Тл. Площадь сечения сердечника S=25 см², длина средней линии сердечника $l_{\rm cp}=0.5$ м, длина воздушного зазора $l_{\rm B}=0.5$ мм. Материал сердечника — литая сталь (кривые намагничивания приведены на рисунке 5.12). Определить ток в обмотке, имеющей 500 витков. Потоком рассеяния $\Phi_{\rm p}$ пренебречь.

Решение. Согласно второму закону Кирхгофа для магнитной цепи, МДС катушки

$$IN = H_{\rm cr} l_{\rm cp} + H_{\scriptscriptstyle \rm B} l_{\scriptscriptstyle \rm B},$$

где $H_{\rm cr}$ – напряженность магнитного поля в стальном сердечнике;

 $H_{\rm B}$ — напряженность магнитного поля в воздушном зазоре.

В неразветвленной магнитной цепи во всех участках проходит один и тот же магнитный поток Φ , площадь сечения воздушного зазора $S_{\mathtt{B}}$ и площадь сечения стального сердечника принимаем равными: $S_{\mathtt{B}} = S_{\mathtt{ct}} = S$.

Следовательно, магнитная индукция во всех сечениях магнитопровода одинаковая: $B_R = B_{c\tau} = B = 1$ Тл.

Напряженность в стальном сердечнике находим по кривой намагничивания литой стали (см. рис. 5.12):

$$H_{cr} = 750 \text{ A/m}.$$

Напряженность в воздушном зазоре находим по уравнению (6.7):

$$H_{\rm b} = \frac{B}{\mu_0} = 0.8 \cdot 10^6 \cdot B = 0.8 \cdot 10^6 \cdot 1 = 0.8 \cdot 10^6 \text{ A/m}.$$

Подставляем найденные значения напряженностей в уравнение второго закона Кирхгофа и находим МДС катушки:

$$IN = 750 \cdot 0.5 + 0.8 \cdot 10^6 \cdot 5 \cdot 10^{-3} = 375 + 4000 = 4375 \text{ A}.$$

Ток в катушке

$$I = \frac{IN}{N} = \frac{4375}{500} = 8,75 \text{ A}.$$

6.6. Расчет разветвленных магнитных цепей

Наиболее распространены разветвленные магнитные цепи, содержащие два узла. Рассмотрим для примера расчет разветвленной магнитной цепи (рис. 6.5) методом двух узлов.

Рис. 6.5. Схема разветвленной магнитной цепи с двумя узлами

Заданы конфигурация магнитной цепи, геометрические размеры (длина каждой ветви сердечника l_1 , l_2 , l_3 , их сечения S_1 , S_2 , S_3 , длина воздушного зазора l_B), значения МДС I_1N_1 и I_3N_3 , кривая намагничивания B(H). Требуется определить магнитные потоки Φ_1 , Φ_2 , Φ_3 .

В схеме (см. рис. 6.5) определяют направления МДС I_1N_1 и I_3N_3 , пользуясь правилом правоходового винта. Произвольно выбирают и указывают направления магнитных потоков Φ_1 , Φ_2 , Φ_3 и магнитного напряжения между двумя узлами U_{nkd} (рекомендуется их направить к одному узлу).

Сущность метода заключается в нахождении такого магнитного напряжения U_{mkd} , при котором выполняется первый закон Кирхгофа:

$$\Phi_1 + \Phi_2 + \Phi_3 = 0$$
.

Для этого выражают напряжение U_{mkd} через параметры каждой из ветвей, используя второй закон Кирхгофа:

$$U_{Mkd} = H_1 l_1 + H_B l_B - I_1 N_1; (6.8)$$

$$U_{\text{Mkd}} = H_2 l_2; \tag{6.9}$$

$$U_{Mkd} = H_3 l_3 + I_3 N_3. (6.10)$$

В соответствии с методикой, изложенной в п. 6.4, выполняют расчеты для построения вебер-амперных характеристик ветвей, т. е. зависимостей $\Phi_1(U_{mkd})$, $\Phi_2(U_{mkd})$, $\Phi_3(U_{mkd})$. Для этого задают значения магнитной индукции B (положительные и отрицательные) из кривой намагничивания и находят соответствующие значения напряженности H для ферромагнитных участков цепи. Напряженность в воздушном зазоре H_B определяют по формуле (6.7). Для каждого значения B находят магнитный поток Φ по уравнению (6.1) и магнитное напряжение U_{mkd} по выражениям (6.8)–(6.10).

Расчеты удобно свести в таблицу.

По результатам расчетов строят в одной системе координат зависимости $\Phi_1(U_{\text{Mkd}})$, $\Phi_2(U_{\text{Mkd}})$ и $\Phi_3(U_{\text{Mkd}})$ (рис. 6.6).

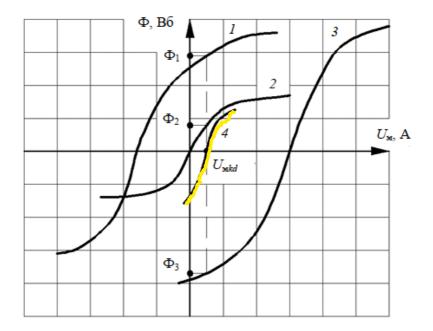


Рис. 6.6. Примерный вид расчетных вебер-амперных характеристик ветвей: $1-\Phi_1(U_{\mathit{mkd}});\ 2-\Phi_2(U_{\mathit{mkd}});\ 3-\Phi_3(U_{\mathit{mkd}});\ 4-\sum\!\Phi(U_{\mathit{mkd}})$

Поскольку вебер-амперные характеристики ветвей представляют собой функции одного и того же напряжения между двумя узлами для трех ветвей, то, задаваясь этим напряжением, можно суммировать магнитные потоки разных ветвей. Для облегчения поиска напряжения U_{Mkd} , при котором $\Sigma \Phi = 0$, можно построить зависимость ($\Phi_1 + \Phi_2 + \Phi_3$)(U_{Mkd}). Задаются несколькими значениями U_{Mkd} , при которых наиболее вероятно получить сумму, равную нулю, и строят зависимость $\Sigma \Phi(U_{\text{Mkd}})$ (см. рис. 6.6). Искомое значение U_{Mkd} будет находиться в точке пересечения этой зависимости с горизонтальной осью.

Пользуясь найденным значением U_{mkd} , определяют магнитные потоки в каждой ветви, затем осуществляют проверку решения по первому закону Кирхгофа.

🔉 Вопросы и задачи для самоконтроля

- 1. Дайте определение магнитной цепи.
- Запишите, чему равна магнитодвижущая (намагничивающая) сила.
- 3. Определите, чему равно падение магнитного напряжения на участке магнитной цепи.
- Сформулируйте и запишите первый и второй законы Кирхгофа для магнитной цепи.
- Запишите выражения закона Ома и магнитного сопротивления участка магнитной цепи.
- 6. Изложите последовательность расчета МДС неразветвленной однородной магнитной цепи при заданном магнитном потоке.
- Изложите последовательность расчета магнитного потока неразветвленной однородной магнитной цепи при заданном значении МДС.
- 8. Катушка с сердечником имеет N=200 витков. Сердечник кольцевой формы из литой стали. Площадь сечения сердечника $S=12.5~{\rm cm}^2$, радиус средней линии сердечника $R=10~{\rm cm}$. Кривая намагничивания литой стали приведена на рисунке 5.12. Определите, какой величины должен быть ток в обмотке, чтобы получить магнитный поток в сердечнике $\Phi=1.5\cdot 10^{-3}~{\rm B6}$. Ответ: $I\approx 4.4~{\rm A}$.
- 9. Определите магнитный поток в кольцевом сердечнике из электротехнической стали 1512, если длина средней линии сердечника l=80 см, сечение сердечника S=20 см 2 , в катушке с числом витков N=200 ток I=2 А. Кривая намагничивания электротехнической стали приведена на рисунке 5.12. Ответ: $\Phi\approx 2,16\cdot 10^{-3}$ Вб.