67-68 Коэффициент мощности

Отношение активной мощности *P* к полной *S* называют коэффициентом мощности. В цепях синусоидального напряжения он численно равен соs ф и показывает, какую долю всей вырабатываемой источником мощности составляет активная мощность.

Большинство потребителей электрической энергии представляют собой электромагнитные механизмы, в которых переменный ток индуктирует реактивные ЭДС, обусловливающие сдвиг по фазе между током и напряжением, вследствие чего коэффициент мощности $\cos \phi \le 1$.

При низком коэффициенте мощности имеет место неудовлетворительное использование установленной активной мощности электрических приемников. Повышение коэффициента мощности важно с экономической стороны. Поскольку ток в линии $I_{\Pi} = \frac{P_{\Pi}}{U \cos \phi}$, то при неизменных активной мощности $P_{\Pi} = \text{const}$ и напряжении источника U = const с повышением коэффициента мощности соз ϕ уменьшается ток линии, а это приведет к уменьшению потерь мощности в линии $\Delta P_{\Pi} = I_{\Pi}^2 R_{\Pi}$, где R_{Π} – активное сопротивление проводов линии (см. пример 10.3). Как правило, крупным потребителям электрической энергии электроснабжающие организации задают средневзвешенное значение коэффициен-

та мощности, обеспечение которого контролируется, и невыполнение его оборачивается применением штрафных санкций. Коэффициент мощности электроэнергетических систем достаточно высок: $\cos \varphi = 0.9 - 0.95$.

Для повышения коэффициента мощности проводится ряд мероприятий: заменяются недостаточно нагруженные двигатели двигателями меньшей мощности, ограничивается работа их на холостом ходу, применяются компенсирующие устройства и т. д.

Эффективным способом достижения этой цели, наряду с другими, является применение компенсирующих устройств, в частности, параллельное подключение к приемнику с низким коэффициентом мощности конденсаторов. В таком случае энергия в магнитном поле приемника частично или полностью накапливается за счет энергии электрического поля конденсатора и наоборот, а генератор и провода линии разгружаются от обменной энергии, что позволяет лучше использовать установленную мощность, т. е. увеличить активную мощность, развиваемую генераторами.

С увеличением емкости ток конденсатора $I_C = \omega CU$ увеличивается так, что при некоторой емкости он может стать равным индуктивной составляющей тока приемника I (режим резонанса тока). В этом случае произойдет полная компенсация сдвига фаз. Ток линии будет минимальным, равным активной составляющей тока приемника I_a . При дальнейшем увеличении емкости I_C станет больше I, что приведет к росту тока линии. Наступает режим перекомпенсации. На рисунке 10.14 показано, как изменяется ток линии I_{Π} и сос φ при изменении параллельно подключаемой емкости конденсатора Cпри P = const и U = const. На рисунке 10.14 C_{Π} – емкость полной компенсации.

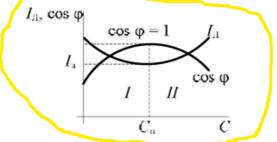


Рис. 10.14. Зависимость тока линии и коэффициента мощности от емкости: *I* – область недокомпенсации; *II* – область перекомпенсации

Для обеспечения заданного значения коэффициента мощности необходимо рассчитать требуемую емкость конденсатора. Если электроприемники имеют мощность P = const и коэффициент мощности $\cos \varphi_1$, то их реактивная индуктивная мощность $Q_1 = P \operatorname{tg} \varphi_1$. При заданном значении $\cos \varphi_2 (\cos \varphi_1 > \cos \varphi_2)$ реактивная мощность должна быть $Q_2 = P \operatorname{tg} \varphi_2$.

Разность реактивных мощностей $Q_1 - Q_2$ компенсируется емкостной реактивной мощностью конденсаторов:

$$Q_C = Q_1 - Q_2 = P(\operatorname{tg} \varphi_1 - \operatorname{tg} \varphi_2).$$

Реактивную мощность конденсаторов можно также определить по формуле

$$Q_C = b_C U^2 = \omega C U^2.$$

Приравнивая правые части уравнений (10.10) и (10.11), определяем емкость конденсаторов:

$$C = \frac{P(\operatorname{tg} \varphi_1 - \operatorname{tg} \varphi_2)}{\omega U^2}.$$
 (10.18)

Подключение конденсаторов для компенсации сдвига фаз осуществляется в месте ввода линии питания в распределительное устройство. Экономически выгодно, как следует из формулы (10.18), подключать конденсаторы на возможно более высокое напряжение. Угол сдвига фаз обычно доводят до величины, при которой $\cos \varphi = 0.9-0.95$.

Пример 10.3. Коэффициент мощности приемника энергии повышают с 0,7 до 0,91. Потери мощности в двухпроводной линии передачи равны 8 % от мощности приемника (при соѕ φ = 0,7). На сколько процентов можно увеличить активную мощность при передаче энергии с той же потерей мощности в линии, но при повышении соѕ φ до 0,91? Сколько процентов будут составлять потери мощности, если активную мощность приемника не увеличивать при повышении соѕ φ до 0,91?

Решение. Выразим потери мощности в линии:

$$\Delta P = 2RI^2$$

где R – сопротивление одного провода линии;

I – ток в проводах линии.

Поскольку ток должен оставаться неизменным, тогда его можно выразить из формулы мощности:

$$I = \frac{P_1}{U\cos\varphi_1} = \frac{P_2}{U\cos\varphi_2}$$

(здесь индекс 1 относится к режиму до компенсации, индекс 2 – после увеличения коэффициента мощности).

Следовательно, после повышения соs *ф* мощность приемника может иметь значение

$$P_2 = P_1 - \frac{\cos \varphi_2}{\cos \varphi_1} = P_1 \frac{0.91}{0.7} = 1.3P_1,$$

т. е. повысив коэффициент мощности, активную мощность приемников можно увеличить на 30 % путем присоединения новых приемников энергии.

Если активную мощность приемников оставить прежней:

 $P = UI_1 \cos \varphi_1 = UI_2 \cos \varphi_2, \qquad (10.19)$

то в результате повышения коэффициента мощности ток в проводах линии уменьшится.

Действительно, из выражения (10.19)

$$I_2 = I_1 \frac{\cos \varphi_1}{\cos \varphi_2} = I_1 \frac{0.7}{0.91} = 0.77 I_1.$$

В формулу потери мощности в линии этот ток входит в квадрате:

$$\Delta P = 2RI^{2};$$

$$\Delta P_{2} = 2RI^{2}_{2} = 2R(0,77I_{1})^{2}.$$

Новая величина потери мощности в линии составляет от прежней

$$\frac{\Delta P_2}{\Delta P_1} = (0,77)^2 = 0,59,$$

поэтому $\Delta P_2 = 0.59 \cdot 8 = 4.72$ %, т. е. потери мощности в линии уменьшатся с 8 % от мощности приемников до 4.72 %.

🧟 Вопросы и задачи для самоконтроля

1. Приведите примеры построения векторных диаграмм синусоидальных напряжений и тока при последовательном соединении *R* и *L*, *R* и *C*, *L* и *C*. Постройте графики мгновенной мощности в цепи синусоидального тока для различных значений сдвига фаз между напряжением и током.

 Поясните, как используют при расчете электрических цепей прямоугольный треугольник сопротивлений, треугольник проводимостей.

 Запишите формулу для расчета активной мощности. Назовите, в каких единицах измеряется активная мощность.

5. Дайте определения полной мощности, коэффициента мощности.

Расскажите, что такое резонанс напряжений, резонанс токов.
Объясните условия возникновения резонанса напряжений, резонанса токов в электрической цепи.

 Объясните, как определяются волновое сопротивление, добротность колебательного контура.

 Приведите примеры компенсации угла сдвига фаз в цепи с низким коэффициентом мощности.

9. Определите действующее значение тока в цепи с последовательно соединенными резистором R = 4 Ом и конденсатором, реактивное сопротивление которого $X_C = 3$ Ом. К электрической цепи приложено синусоидальное напряжение U = 25 В. Ответ: 5 А.

10. В цепи переменного тока с последовательным соединением элементов R и L измерены напряжение на входе U = 100 В, ток I = 5 А, мощность P = 300 Вт. Определите сопротивление X_L (Ом). Ответ: 16 Ом.

11. В электрической цепи последовательно соединены резистор R = 6 Ом, катушка индуктивности и конденсатор, реактивные сопротивления которых $X_L = 12$ Ом, $X_C = 4$ Ом. Если на входе электрической цепи синусоидальное напряжение, действующее значение которого U = 80 В, то какое действующее напряжение на конденсаторе? Ответ: 32 В.

12. В электрической цепи (рис. 10.15) имеет место резонанс. Действующее значение синусоидального напряжения источника питания U = 100 В, R = 10 Ом, $X_C = 10$ Ом. Определите величину сопротивления X_L , токи и напря-

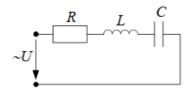


Рис. 10.15

жения на участках цепи, постройте векторную диаграмму напряжений и токов. Ответ: 10 Ом; 10 А; $U_R = U_L = U_C = 100$ В.

13. В электрической цепи имеет место резонанс (рис. 10.16). Действующее значение синусоидального напряжения источника питания U = 100 В, R = 10 Ом, $X_C = 20$ Ом. Определите величину сопротивления X_L , токи на участках цепи, постройте векторную диаграмму напряжения и токов. Ответ: 10 Ом; 5 А; 7,05 А; 5 А.

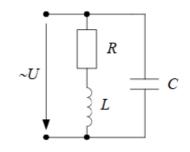


Рис. 10.16