48 Электростатическое поле проводников ## 1.10. Проводник в электростатическом поле. Электростатическое экранирование Проводящие вещества содержат большое количество свободных элементарных частиц, обладающих зарядом (электроны или положительные и отрицательные ионы). Под действием электрического поля эти частицы приходят в упорядоченное движение. Если внести металлический проводник во внешнее электрическое поле, то под действием сил поля свободные электроны начнут перемещаться по проводнику против поля. На одной части поверхности проводника сосредоточатся отрицательные заряды, на противоположной — положительные (рис. 1.6). Рис. 1.6. Проводник в электростатическом поле Поле этих зарядов направлено противоположно внешнему полю. Перераспределение носителей зарядов происходит до тех пор, пока напряженность \vec{E} поля внутри проводника не станет равной нулю, а потенциал ϕ всех точек тела не станет одинаковым. Если допустить, что потенциалы точек тела различны, то под действием разности потенциалов начнется перемещение зарядов и пойдет ток, т. е. будет выделяться энергия в виде теплоты, что на практике не наблюлается Поверхность проводника будет эквипотенциальной поверхностью, а линии напряженности вне проводника перпендикулярны его поверхности. Если проводнику сообщить электрический заряд, то под действием сил отталкивания элементы этого заряда будут перемещаться по проводнику и сосредотачиваться на его поверхности в слое, который можно считать бесконечно тонким. Внутри заряженного проводника поле отсутствует. Описанное свойство проводников используют в технике при электростатическом экранировании электрической аппаратуры. Экранируемый аппарат помещают в металлическую сетку-экран. В области, ограниченной этим экраном, электрического поля практически не будет. #### 1.11. Поле точечного заряда и поле заряженного шара В качестве примера использования теоремы Гаусса найдем напряженность поля, создаваемую точечным зарядом q в точке, удаленной на расстоянии R от заряда. С этой целью проведем через заданную точку сферическую поверхность радиусом R, полагая, что заряд находится в центре сферы (см. рис. 1.5), и применим к этой сфере теорему Гаусса: $$\oint_{S} \vec{E} d\vec{S} = \frac{q}{\varepsilon_{a}}.$$ В данном примере в каждой точке сферы векторы \vec{E} и $d\vec{S}$ совпадают по направлению. Угол между ними равен нулю. В силу симметрии числовое значение E во всех точках сферы одно и то же, поэтому поток вектора напряженности поля через сферическую поверхность S $$ES = E4\pi R^2 = \frac{q}{\varepsilon_a},$$ где $4\pi R^2$ – площадь сферической поверхности S. Следовательно, напряженность, создаваемая точечным зарядом q на расстоянии R от него, $$E = \frac{q}{4\pi R^2 \varepsilon_a}. (1.6)$$ В соответствии с теоремой Гаусса напряженность поля заряженного шара имеет такое же выражение. Следовательно, заряд шара можно считать сосредоточенным в центре и рассматривать заряженный шар как точечное заряженное тело. В выражении (1.6) R – расстояние от центра шара до рассматриваемой точки поля. Из выражения (1.6) видно, что наибольшая напряженность поля создается на поверхности заряженного шара. **Пример 1.2.** Чему равен запас электрической прочности воздуха, окружающего заряженный шар, имеющий радиус R=1 мм, если электрический заряд шара $q=0.33\cdot 10^{-10}$ Кл, пробивная напряженность воздуха $E_{\rm mp}=3\cdot 10^6$ В/м, абсолютная диэлектрическая проницаемость воздуха $\varepsilon_{\rm a}=\varepsilon_0=8.85\cdot 10^{-12}$ Ф/м. **Решение.** Напряженность электрического поля на поверхности шара по уравнению (1.6) $$E = \frac{q}{4\pi R^2 \epsilon_s} = \frac{0.33 \cdot 10^{-10}}{4 \cdot 3.14 \cdot 1 \cdot 10^{-6} \cdot 8.85 \cdot 10^{-12}} = 0.3 \cdot 10^6 \text{ B/M}.$$ Запас электрической прочности $$K = \frac{E_{\rm np}}{E} = \frac{3 \cdot 10^6}{0.3 \cdot 10^6} = 10.$$ #### 1.12. Поле заряженной оси Рассмотрим электрическое поле заряженной оси с зарядом на единицу длины, равным т. Диэлектрическая проницаемость среды, окружающей ось, равна ε_a . Для нахождения напряженности поля в некоторой точке, удаленной на расстояние R от оси (рис. 1.7), проведем через эту точку цилиндрическую поверхность. Ось цилиндрической поверхности совпадает с заряженной осью. Длина цилиндра равна l. Рис. 1.7. Поле заряженной оси Используем теорему Гаусса, которая применима для замкнутой поверхности. В рассматриваемом случае замкнутая поверхность образована боковой поверхностью цилиндра и двумя его основаниями. Поток вектора \vec{E} имеется только через боковую поверхность цилиндра. Через основания поток вектора \vec{E} отсутствует, так как вектор элемента поверхности $d\vec{S}$ каждого основания перпендикулярен вектору \vec{E} . Вектор $d\vec{S}$ боковой поверхности и вектор напряженности электрического поля по направлению совпадают. В силу симметрии напряженность E будет одной и той же во всех точках боковой поверхности цилиндра. По теореме Гаусса (1.5) поток вектора напряженности электрического поля через боковую поверхность цилиндра $$\oint_{S} \vec{E} d\vec{S} = E 2\pi R l = \frac{\tau l}{\varepsilon_a},\tag{1.7}$$ где $S = 2\pi Rl -$ площадь боковой поверхности цилиндра. Из выражения (1.7) следует $$E = \frac{\tau}{2\pi R \varepsilon_a}.$$ (1.8) Напряженность в поле заряженной оси изменяется обратно пропорционально расстоянию *R* точки от оси. Наибольшая напряженность находится на поверхности заряженной оси. # 🙇 Вопросы и задачи для самоконтроля - 1. Дайте определение электрического поля. - 2. Поясните, какое поле называют электростатическим. - 3. Изложите физический смысл вектора напряженности \vec{E} и потенциала ϕ . - Нарисуйте картину электрического поля, нанесите линии напряженности и эквипотенциальные линии двух заряженных осей. - 5. Объясните, чем отличаются свободные заряды от связанных. - 6. Запишите теорему Гаусса. - Назовите величины, от которых зависит запас электрической прочности диэлектрика. - 8. Два одинаковых точечных электрических заряда взаимодействуют в воздухе на расстоянии R=5 см с силой F=0,144 H. Определите величину электрического заряда. Ответ: $2\cdot 10^{-7}$ Кл. - Напряженность электрического поля на расстоянии 20 см от центра заряженного шара радиусом 4 см составляет 10 В/м. Определите напряженность поля на поверхности шара. Ответ: 250 В/м.