26 Порядок расчёта освещённости точечным методом

Расчёт по определению освещённости в заданной точке горизонтальной поверхности производят в следующем порядке.

- **1.** Определяют тангенс угла, образованного вертикалью и лучом света, падающим в заданную точку: $tg\alpha = d/H_P$.
 - 2. Затем определяют угол α и $\cos^3 \alpha$.
- 3. По кривым силы света выбранного типа светильника с условной лампой Φ'_{Λ} = 1000 лм определяют по углу α силу света $I_{\alpha(1000)}$.

Кривые силы света стандартных светильников с условной лампой в 1000 лм приведены в таблице 4 приложения 1.

- 4. По формуле $E'_{rA} = I_{\alpha} \cdot \cos^3 \alpha / (H_P^2 \cdot K_3)$ вычисляют условную горизонтальную освещённость E'_{rA} (для лампы в 1000 лм).
- 5. <mark>Условную освещённость пересчитывают</mark> с учётом светового потока Ф_л лампы, установленной в светильнике:

$$E_{rA} = E'_{rA} \cdot \Phi_{\pi} / 1000$$

Если рассматриваемая точка *А* на поверхности *Q* освещается несколькими светильниками общего освещения, то учитывают и освещённость, создаваемую в точке *А* отдельными светильниками:

$$E_{rA} = e_{1A} + e_{2A} + ... + e_{nA} = \sum e_{nA}$$

где e_{1A} , ..., e_{nA} — освещённости, создаваемые в точке A отдельными светильниками.

Расчётная формула для определения фактической освещённости в точке *A* от нескольких однотипных светильников общего освещения с лампами одинаковой мощности принимает вид

$$E_{rA} = \sum e_{nA} \Phi_{\Lambda} / 1000$$

Однако расчёт освещения таким методом неудобен, так как требуется определить значения освещенности от каждого светильника и суммировать их. Для упрощения в проектной практике применяют наиболее распространённый способ расчёта по пространственным кривым равной освещённости — изолюксам.

Эти кривые построены для различных типов стандартных светильников с условной лампой в 1000 лм в прямоугольной системе координат в зависимости от расчётной высоты подвеса светильника $h_{\rm P}$ и

расстояния *d* проекции светильника на горизонтальную поверхность до заданной (контрольной) точки (прил. 2).

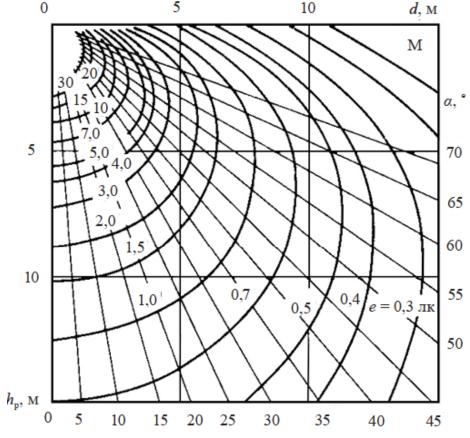


Рисунок 1 – Изолюксы для светильников с КСС типа М (равномерная)

Расчёт производится в следующем порядке.

- 1. Для выбранного типа светильника в зависимости от расчётной высоты его подвеса H_P и расстояния d, определённого по плану, для каждого значения находят ближайшую кривую, на которой указана условная освещённость. Если точка, заданная координатами H_P и d, не попадает на кривую, то значение освещённости определяют посредством интерполирования между двумя ближайшими кривыми.
- 2. Найденные по кривым условные освещённости от ближайших светильников для расчётной точки суммируются: $\sum e_r = e_{r1} + e_{r2} + ... + e_{rn}$.

3. Если задана освещённость *E*, и требуется определить мощность лампы, необходимую для обеспечения этой освещённости на горизонтальной поверхности, расчётное значение светового потока лампы рассчитывают по формуле

$$\Phi_{\Pi} = 1000 \cdot E_r \cdot K_3 / (\mu \cdot \sum e_r)$$

где µ — коэффициент, учитывающий дополнительную освещённость в заданной точке от удалённых светильников, не учтённых при определении условной освещённости, и от отражения стен, потолка и расчётной (рабочей) поверхности помещения. Значение µ в зависимости от коэффициентов отражения поверхностей помещения принимают в пределах 1—1,2.