
27 Пример расчёта освещённости точечным методом

Пример 2.3. Рассчитать эвакуационное освещение помещения механического цеха точечным методом. Эвакуационное освещение в помещении должно обеспечивать на полу основных проходов освещенность E_{min} не менее 0,5 лк. Мощность применяемых ламп накаливания не должна превышать 200 Вт.

Для эвакуационного освещения будем применять светильники типа HCП17 (КСС типа Г-1).

Нормируемая освещённость помещения 200 лк, расчётная высота подвеса светильника $H_P = 8,2$ м. План участка цеха с контрольными точками A и B представлен на рисунке

Решение На плане помещения с известным расположением светильников намечаем контрольные точки *A* и *B*, в которых будем производить расчет освещённости.

Определяем расстояния от контрольной точки до ближайших светильников:

- точка A: d1 = 12,1 м; d2 = 15,7 м;
- точка В: d1 = 12,9 м; d2 = 17,7 м.

По графику для излучателя, имеющего по всем направлениям силу света 100 кд, и значениям $H_{\rm P}$ и d определяем значение условной освещенности e100:

- точка A: e100(1) = 0,27 лк; e100(2) = 0,14 лк;
- точка *B*: *e*100(1) = 0,24 лк; *e*100(2) = 0,1 лк.

Определяем тангенс угла падения светового луча в расчетную точку по формуле : $tg\alpha = d/H_p$.:

точка А:

$$\operatorname{tg} \alpha_1 = \frac{12,1}{8,2} = 1,47$$
, отсюда $\alpha' = 55,77^\circ$;

$$\operatorname{tg} \alpha_2 = \frac{15,7}{8,2} = 1,92$$
, отсюда $\alpha' = 62,42^\circ$;

точка В:

$$\operatorname{tg} \alpha_1 = \frac{12,9}{8,2} = 1,57$$
, отсюда $\alpha' = 57,5^\circ$;

$$\operatorname{tg} \alpha_2 = \frac{17,7}{8,2} = 2,16$$
, отсюда $\alpha' = 65,15$ °.

Для светильников НСП17 (КСС типа Г-1) по справочнику или таблице 4 приложения 1 с условной лампой со световым потоком 1000 лм для найденного угла путем интерполяции определяем силу света I₍₁₀₀₀₎ и рассчитываем значение освещенности, создаваемой этим светильником

$$e = e_{100} I_{\alpha} / 100$$

• точка *А*:

$$\begin{split} I_{a1} &= 162, 9 + \frac{108, 3 - 162, 9}{5} \cdot 0, 77 = 154, 49 \text{ (кд)}; \\ e_1 &= 0, 27 \cdot \frac{154, 49}{100} = 0, 42 \text{ (лк)}; \\ I_{a2} &= 108, 3 + \frac{52, 6 - 108, 3}{5} \cdot 2, 42 = 81, 34 \text{ (кд)}; \\ e_2 &= 0, 14 \cdot \frac{81, 34}{100} = 0, 11 \text{ (лк)}; \end{split}$$

• точка *В*:

$$I_{a1} = 162,9 + \frac{108,3 - 162,9}{5} \cdot 2,5 = 135,6 \text{ (кд)};$$

$$e_1 = 0,24 \cdot \frac{135,6}{100} = 0,33 \text{ (лк)};$$

$$I_{a2} = 52,6 + \frac{0 - 52,6}{5} \cdot 0,15 = 51,02 \text{ (кд)};$$

$$e_2 = 0,1 \cdot \frac{52,02}{100} = 0,05 \text{ (лк)}.$$

Определяем расчетный световой поток для точек A и B по формуле $\Phi_{\pi} = 1000 \cdot E_r \cdot K_3 / (\mu \cdot \Sigma_r)$

где К₃ для ЛН принимаем 1,3 (табл. 2.2); µ принимаем равным 1,1:

$$\Phi_{_{\pi p1}} = \frac{1000 \cdot 0, 5 \cdot 1, 3}{1, 1 \cdot (0, 42 + 0, 11)} = 1115 \text{ (πM)};$$

$$\Phi_{mp2} = \frac{1000 \cdot 0, 5 \cdot 1, 3}{1, 1 \cdot (0, 33 + 0, 05)} = 1555 \text{ (ЛМ)}.$$

По полученному наибольшему значению расчётного светового потока выбираем мощность стандартной лампы по справочнику или таблице 1 приложения 1. Принимаем лампу Б 230-240-100 мощностью 100 Вт со световым потоком $\Phi_{\Lambda T}$ = 1370 лм.

Номенклатура источников света

Тип	Цо- коль	Мощ- ность, Вт	Све- товой поток, лм	Све- товая отдача, лм/Вт	Tc, K				
Лампы накаливания общего назначения									
Б 230-240-25	E 27	25	210	8,4					
Б 230-240-40	E 27	40	430	10,1					
Б 230-240-60	E 27	60	710	12					
Б 230-240-100	E 27	100	1370	13,7					
Б 230-240-150	E 27	150	2150	14,3					
Б 230-240-200	E 27	200	3000	15					
Б 230-240-300	E 27	300	4800	16	4500				

Таблица 4

Значения типовых КСС круглосимметричного светового прибора ($\Phi_{_{\rm J}}=1000$ лм)

Коэф-	Типовые кривые силы света отечественных круглосимметричных светильников																
фи- циент α ₁ , °	M	Д-1	Д	Д-2	Д-3	Γ-1	Γ-2	Г	Г-3	K-1	K-2	K-3	K	С	Л (Ш-1)	Л-Ш (Ш-2)	Ш (Ш-3)
0	159,2	233,4	330,0	295	377,3	503	670,7	800	894,2	1192	1583	2120	2400	0	154,8	119,6	78,3
5	159,2	232,9	328,7	293,8	375,5	499,8	664,8	791,7	883,8	1173	1549	2062	2323	17,9	155,5	119,0	78,6
10	159,2	229,2	325	290,2	370,3	490,2	647,5	767,1	852,5	1118	1449	1893	2097	35,6	158,2	118,6	79,4
15	159,2	228,5	318,8	284,2	361,6	474,4	618,5	726,5	801,1	1026	1288	1595	1737	53,1	164,5	120,2	81,4
20	159,2	224,7	310,1	275,9	349,8	452,7	579,5	670,9	731,2	902	1052	1261	1265	70,1	175,5	126,0	81,7
25	159,2	220	299,1	265,3	334,3	425,1	530,2	601,5	643,8	750	810	832	712	86,6	190,7	134,0	83,3
30	159,2	214,1	285,8	252,5	316	392,1	471,4	519,6	541,3	574	515	249	113	102,5	210,8	145,0	87,2
35	159,2	207,1	270,3	237,7	294,7	354,1	404,7	426,9	439,9	380	196	0	0	117,6	235,1	159,6	94,8
40	159,2	199,3	252,9	221	270,7	311,7	330,9	325,4	301	174	0	0	0	131,8	261,8	180,4	105,4
45	159,2	190,6	233,3	202,4	244,2	265,3	251,4	217,2	168,8	0	0	0	0	145,0	281,6	209,7	121,3
50	159,2	180	212,1	182,1	215,4	215,5	167,3	104,4	32,6	0	0	0	0	157,0	282,1	243,3	137,1
55	159,2	170,5	189,3	160,4	184,6	162,9	81,8	0	0	0	0	0	0	168,0	257,2	269,7	162,0
60	159,2	159,2	165	137,4	152	108,3	0	0	0	0	0	0	0	201,9	212,9	275,0	199,0
65	159,2	147,1	139,5	113,2	118,2	52,6	0	0	0	0	0	0	0	185,8	161,7	247,6	230,0
70	159,2	134,3	112,9	88,1	83,1	0	0	0	0	0	0	0	0	192,6	113,6	194,0	252,0
72	159,2	129,0	102	77,9	68,9	0	0	0	0	0	0	0	0	195,0	95,6	167,0	243,2
74	159,2	123,6	91	67,5	54,6	0	0	0	0	0	0	0	0	197,1	79,4	139,0	225,0
75	159,2	121	85,4	62,3	47,4	0	0	0	0	0	0	0	0	198	71,5	125,2	212,3
76	159,2	118,1	79,8	57,1	40,2	0	0	0	0	0	0	0	0	199,0	63,8	111,1	199,0
78	159,2	112,6	68,6	46,6	25,7	0	0	0	0	0	0	0	0	199,0	49,1	84,5	165,5
80	159,2	106,9	57,3	36,0	11,2	0	0	0	0	0	0	0	0	201,9	35,8	60,4	127,7

Окончание табл. 4

Коэф-	Типовые кривые силы света отечественных круглосимметричных светильников																
фи- циент α ₁ , °	M	Д-1	Д	Д-2	Д-3	Γ-1	Γ-2	Γ	Г-3	K-1	K-2	K-3	K	С	Л (Ш-1)	Л-Ш (Ш-2)	Ш (Ш-3)
82	159,2	101,2	45,9	25,4	0	0	0	0	0	0	0	0	0	203,0	23,8	39,5	89,1
84	159,2	95,4	34,5	14,7	0	0	0	0	0	0	0	0	0	203,9	13,8	22,5	53,6
85	159,2	92,5	28,7	9,4	0	0	0	0	0	0	0	0	0	204,2	10,0	16,2	39,0
86	159,2	89,6	23	4	0	0	0	0	0	0	0	0	0	204,5	6,2	10,1	25,0
88	159,2	83,6	11,5	0	0	0	0	0	0	0	0	0	0	204,9	1,6	2,5	6,4
90	159,2	77,7	0	0	0	0	0	0	0	0	0	0	0	205,0	0	0	0