
24 Рабочие характеристики асинхронного двигателя

При изменении нагрузки двигателя происходит изменение как тока I_1 , и мощности P_1 так и частоты вращения ротора n_2 скольжения s, КПД η и $\cos \phi_1$ Нагрузкой для двигателя служит нагрузочный момент M_2 , приложенный к его валу. При увеличении нагрузочного момента соответственно увеличивается электромагнитный момент, создаваемый двигателем: $M = M_0 + M_2$,

где M_0 — момент, обусловленный механическими и добавочными потерями в двигателе;

 M_2 — механический момент на валу, определяющий мощность P_2 , снимаемую с вала двигателя, так как $P_2 = M_2 \cdot \omega_2$.

Момент M_0 относительно мал, поэтому можно принять, что $M \approx M2$. Зависимости n_2 , s, M_2 , l_1 , $\cos \varphi_1$, η и P_1 от P_2 при U_1 = const и f_1 = const называются рабочими характеристиками асинхронного двигателя. Их примерный вид показан на рисунке.

При холостом ходе, когда $P_2 = 0$ и $M_2 = 0$, ток I_1 равен току холостого хода I_{10} . Этот ток фактически является намагничивающим и создаёт основное магнитное поле. Из-за наличия воздушного зазора между

статором и ротором <mark>он довольно велик</mark> и составляет 20—50 % номинального тока статора.

Мощность P_{10} , потребляемая двигателем из сети при холостом ходе расходуется на потери внутри машины: механические потери ΔP_{MEX} , магнитные потери в стали статора ΔP_{M1} , электрические потери в обмотке статора от тока I_0 .

Увеличение момента M_2 сопровождается увеличением тока ротора I_2 , что связано с увеличением ЭДС E_{25} вследствие снижения частоты вращения n_2 и увеличения s. Поэтому зависимость $n_2 = f(P_2)$ имеет падающий характер. Однако у большинства асинхронных двигателей изменение n_2 незначительно и характеристика $n_2 = f(P_2)$ является достаточно жёсткой.

Зависимость $s = f(P_2)$ имеет возрастающий характер.

Так как $M_2 = 9,55 \cdot P_2 / n_2$, и так как n_2 с увеличением нагрузки изменяется незначительно, то зависимость $M_2 = f(P_2)$ имеет практически линейный характер, причём с увеличением нагрузки P_2 частота вращения ротора уменьшается, а поэтому полезный момент на валу M_2 возрастает несколько быстрее нагрузки.

Зависимость $\eta = f(P_2)$ имеет максимум при нагрузке, когда постоянные потери в двигателе равны переменным, пропорциональным квадрату тока.

Зависимость $\cos \varphi_1 = f(P_2)$. В связи с тем, что ток статора I_1 имеет реактивную (индуктивную) составляющую, необходимую для создания магнитного поля в статоре, коэффициент мощности асинхронных двигателей меньше единицы. Наименьшее значение коэффициента мощности соответствует режиму холостого хода. Объясняется это тем, что ток холостого хода I_0 при любой нагрузке остается практически неизменным. Поэтому при малых нагрузках двигателя ток статора невелик и в значительной части является реактивным ($I_1 \approx I_0$). По мере увеличения нагрузки он возрастает, достигая наибольшего значения при нагрузке, близкой к номинальной. В целях повышения коэффициента мощности важно, чтобы АД работал значительную часть времени с нагрузкой, близкой к номинальной.

Рабочие характеристики асинхронного двигателя могут быть получены экспериментально на специальных тормозных стендах, либо расчётным путём по схеме замещения. Кроме того, для построения рабочих характеристик может быть использована круговая диаграмма.