
31 Расчёт освещённости от светящей линии

Излучатели, длина которых превышает половину расчётной высоты H_P , рассматриваются как светящиеся линии. Для расчёта используют линейные изолюксы, которые дают относительную горизонтальную освещенность e при условной высоте $H_P = 1$ м и условной плотности светового потока $\Phi' = 1000$ лм/м ($\Phi' - п$ лотность светового потока в ряду, т. е. отношение суммарного потока ламп к длине светящейся линии).

Линейные изолюксы строят для случая, когда расчётная точка совпадает с проекцией конца светящегося элемента на расчётную плоскость.

Расчёт с использованием линейных изолюкс осуществляют следующим образом:

- а) определяют высоту $H_{\rm P}$, тип светильников и люминесцентных ламп в них, размещение светильников в линии и число линий в помещении;
- б) по плану определяют геометрические размеры: l длина светящейся линии, м; d расстояние от проекции светящейся линии на плоскость, проходящую через расчётную точку, до расчётной точки, м.

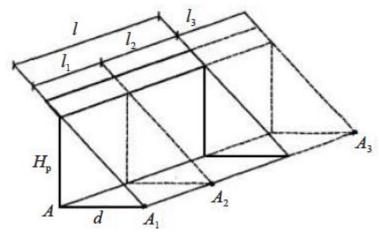


Схема для расчёта освещённости от светящейся линии

Затем рассчитывают их относительные значения:

длины отрезка линии $l' = l / H_P$; и расстояния $d' = d / H_P$.

- в) если контрольная точка лежит напротив конца ряда светильников (точка A), то по графикам линейных изолюкс для точки с координатами l и d (по l' и d') определяют условную освещённость e;
- г) вычисляют суммарную условную освещённость расчётной точки $\sum e$ от ближайших рядов или их частей, освещающих эту точку;
- д) если расчётная точка лежит не напротив конца ряда светильников, то этот ряд разбивается на две части (точка A_2) или дополняется условным отрезком (точка A_3). При этом условная освещённость в точке A_2

$$e(A_2) = e(l_1) + e(l_2),$$

a B TOUKE A_3
 $e(A_3) = e(l) + e(l_3),$

где $e(l_1)$, $e(l_2)$, $e(l_3)$ — условная освещённость от участков светящегося элемента длиной соответственно l_1 , l_2 , l_3 , определяемая по графикам линейных изолюкс;

e) определяют необходимую линейную плотность Ф светового потока в линии

$$\Phi = E_{\rm H} \cdot K_3 \cdot H_{\rm P} \cdot 1000 / (\mu \cdot \Sigma e),$$

где E_{H} – нормированная освещённость;

 К₃ – коэффициент запаса, учитывающий ослабление светового потока со временем;

 H_{P} — расчётная высота светильника;

- $\mu \approx 1,1$ коэффициент, учитывающий отражение светового потока от потолка, стен, пола;
- Σе сумма условных освещённостей, создаваемых отдельными световыми линиями (отрезками).
- ж) суммарный расчётный световой поток ламп в светильнике определяют по формуле

$$\Phi_{\mathsf{JIP}} = \Phi(l + \lambda) / N_{\mathsf{P}}$$

где λ — суммарная длина равномерно распределенных разрывов (λ < 0,5 H_P), м. При λ > 0,5 H_P рекомендуется вести расчёты отдельно для каждого сплошного участка; N_P — число светильников в ряду.

з) при заданном потоке Ф_л можно определить фактическую освещённость в заданной точке

$$E = \Phi_{\Pi} \cdot \mu \cdot \Sigma e / (K_3 \cdot H_P \cdot 1000)$$