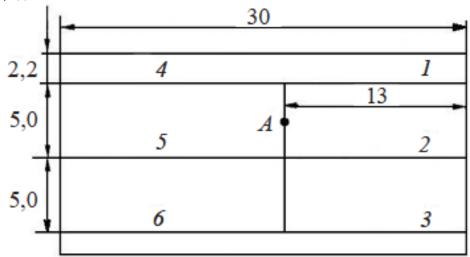
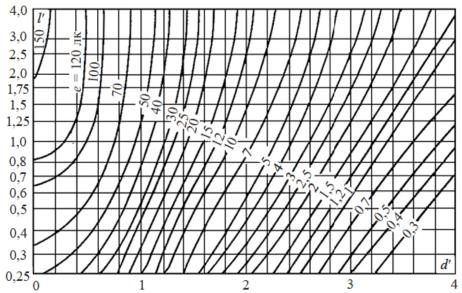
32 Пример расчёта освещённости от светящей линии

Пример 2.4. Рассчитать осветительную установку, приведенную на рисунке 2.7, для создания освещенности $E_{\rm H} = 300$ лк при $K_3 = 1,5$. В установке применяют светильники типа ЛСП18 с КСС типа Д-1 с лампами ЛБ; $H_{\rm P} = 4$ м. Точка A расположена на одинаковом расстоянии от обоих рядов.




Рис. 2.7. Схема осветительной установки (размеры приведены в метрах)

Решение. Светящие линии разбиваем на полуряды 1-6, как показано на рисунке 2.7. Геометрические размеры d и l для каждого полуряда, определённые на основании схемы осветительной установки, расчётные значения d' и l', а также значения условной освещённости, создаваемой этими полурядами в точке A, найденные по линейным изолюксам (смотри рисунок) на основании этих размеров, приведены в таблице 2.10.

Таблица 2.10

resystem pur form september in					
Полуряд	<i>d</i> , м	<i>l</i> , м	d'	l'	е, лк
1, 2	2,5	13	0,625	3,25	2 · 110
3	7,5	13	1,87	3,25	16
4, 5	2,5	17	0,625	4,25	2 · 112
6	7,5	17	1,87	4,25	17
					$\Sigma_0 = 477$

Результаты пасчета освещенности

Линейные изолюксы для светильников с КСС типа Д-1 l'=4,25 выходит за границы рисунка. Продляем линии изолюкс. Принимая $\mu=1,1$, находим плотность светового потока по формуле

$$\Phi = E_H \cdot K_3 \cdot H_P \cdot 1000 / (\mu \cdot \Sigma e) = 300 \cdot 1,5 \cdot 4 \cdot 1000 / (1,1 \cdot 477) = 3430 \text{ лм/м}.$$

Необходимое количество $N_{\rm P}$ светильников в ряду (в каждом светильнике по две лампы ЛБ мощностью 36 Вт с $\Phi_{\rm Л}$ = 3050 лм каждая (справочные данные) рассчитываем по формуле

$$N_P = \Phi \cdot l / (2 \cdot \Phi_{JI}) = 3430 \cdot 30 / (2 \cdot 3050) = 16.9 \text{ шт.}$$

Принимаем 17 светильников ЛСП18 длиной 1,63 м.

Определяем длину светящейся линии: $l = 17 \cdot 1,630 = 27,71$ (м).

Определяем суммарную длину разрывов: $\lambda = 30 - 27,71 = 2,29$ (м).

Рассчитываем длину одного разрыва: $L_A = 2,29 / 16 = 0,143$ (м).

Окончательно принимаем в ряду 17 светильников ЛСП18 с лампами ЛБ 2×36 каждый, размещённых равномерно с расстоянием между светильниками $L_{\rm A}=0.143$ м.

Определяем фактическую линейную плотность светового потока $\Phi = \Phi_{\pi} \cdot 2 \cdot N_{P} / A = 3050 \cdot 2 \cdot 17 / 30 = 3457 \text{ лм/}$

Определяем фактическую освещённость расчётной точки

$$E = \Phi \cdot \mu \cdot \Sigma e / (K_3 \cdot H_P \cdot 1000) = 3457 \cdot 1,1 \cdot 477 / (1,5 \cdot 4 \cdot 1000) = 302$$
 лк.