Вопросы к обязательной контрольной работе по электрическому освещению с краткими ответами 1 Назовите светотехнические понятия и величины.

Свет — это испускание или распространение электромагнитных волн (фотонов) оптическом диапазоне. Отражением возвращение излучения объектом. **Поглощение** — это превращение энергии излучения в другую форму энергии. Преломлением является изменение направления излучения. **Мощность** светового потока **Ф** измеряется в люменах (лм). **Силой света /** называется пространственная плотность светового потока, измеряется в канделах (кд), $I = \Phi / \omega$. Кандела может быть выражена как сила света точечного источника, испускающего световой поток в 1 лм, равномерно распределённый внутри телесного угла в 1 ср (стерадиан). Освещённость Е представляет собой поверхностную плотность падающего светового потока в люксах (лк). Один люкс – это освещённость, создаваемая равномерно распределённым световым потоком в 1 лм на освещаемой поверхности площадью 1 м^2 . Яркость \boldsymbol{L} показывает зрительное восприятие света глазом. Единицей яркости служит кандела на квадратный метр ($\kappa g/m^2$).

Для оценки энергоэффективности того или иного источника света пользуются понятием **световой отдачи** $H = \Phi / P$, лм /Вт.

2 Какие бывают системы освещения? Как определить нормируемую освещённость? Чему она равна?

Различают системы общего, местного и комбинированного освещения. Светильники **общего** освещения располагают только в верхней зоне помещения и крепят их непосредственно к потолку, на фермах, стенах, колоннах или на технологическом производственном оборудовании. **Местное** освещение предусматривается на отдельных рабочих местах светильниками, установленными непосредственно у рабочих мест. Устройство в помещениях только местного освещения запрещено. Оно должно быть комбинированным.

Нормы освещённости прописаны в стандарте CH 2.04.03-2020 исходя из характера зрительной работы, выполняемой в помещении. Например, на участке ремонта электрооборудования и источников питания должно быть при общем освещении 300 лк, при комбинированном всего 750 лк, из них общего 200 лк. В учебной аудитории должно быть 400 лк. Для жилых комнат требуется общая освещённость 150 лк. При аварийном освещении безопасности требуется освещённость 5 % от нормальной, но не менее 2 лк. При аварийном эвакуационном освещении требуется в помещениях 0,5 лк, на открытых территориях 0,2 лк.

3 Как классифицируют источники света? Какими бывают лампы?

Различают тепловые, разрядные и светодиодные источники света

Источники света бывают: лампы накаливания, в том числе галогенные; газосветные лампы — люминесцентные низкого давления ЛЛ, компактные люминесцентные КЛЛ, дуговые ртутные люминесцентные ДРЛ, дуговые ртутные с вольфрамовой нитью накаливания ДРВ, индукционные лампы ИЛ, металлогалоидные лампы ДРИ (Д — дуговая, Р — ртутная, И — с излучающими добавками), натриевые лампы высокого давления — ДНаТ — дуговая натриевая трубчатая, натриевые лампы низкого давления ДНаО, ксеноновые лампы ДКсТ — дуговая ксеноновая трубчатая, в том числе ДКсТЛ в колбе из легированного кварца; светодиодные.

Лампы ЛЛ, ДРЛ и ДРИ требуют пуско-регулирующей аппаратуры, ДНаТ — высокочастотного зажигающего импульса 2-4 кВ, ИЛ — источника высокочастотного питающего тока, ДКсТ — специального пускового устройства.

4 В чём особенности и преимущества светодиодных ламп?

Светодиодные источники света это полупроводниковые устройства, излучающие свет при прохождении электрического тока полупроводниковый материал, что делает энергоэффективными и долговечными. Они обладают прочностью, экологичностью (не выделяют УФ- и ИК-лучи) и широким спектром применения, от бытового освещения до промышленного и Филаментные светодиодные лампы автомобильного. светодиодных ламп, которые внешне схожи с лампами накаливания. Они состоят из прозрачной стеклянной колбы, цоколя и внутри находятся светодиодные нити вместо нити накаливания.

Основные преимущества светодиодных ламп это низкое потребление энергии, долгий срок службы (десятки тысяч часов) и ударопрочность, а к недостаткам можно отнести высокую начальную стоимость и возможный негативный эффект мерцания, вызывающий утомляемость.

5 Как классифицируют светильники? Как их размещают?

Светильник это световой прибор перераспределяющий свет лампы. Важнейшей характеристикой является распределение света в пространстве — кривая силы света (КСС). Типовые КСС — синусная С, широкая Ш, равномерная М, полуширокая Л, глубокая Г, косинусная Д, концентрированная К.

Также светильники классифицируют по электробезопасности, по степени защиты от воздействия окружающей среды *IP*, по взрывозащищённости и по способу установки — стационарные и переносные Более подробно С — подвесной, П — потолочный, В — встраиваемый, Б — настенный, Н — настольный, Т — напольный (торшер), К — консольный, Р — ручной, Г — головной.

6 В чём заключается светотехнический расчёт методом коэффициента использования светового потока?

По длине помещения A, ширине B и расчётной высоте H_P определяется индекс помещения $i_\Pi = A \cdot B \ / \ (H_P \cdot (A + B))$. По значениям этого индекса с учётом коэффициентов отражения потолка, стен, рабочей поверхности (соответственно ρ_Π , ρ_C , ρ_P) для известной кривой силы света КСС по таблице определяется η_{OV} — коэффициент использования светового потока. Он подставляется в формулу расчёта требуемого светового потока лампы $\Phi_{\Lambda P} = E_H \cdot K_3 \cdot S \cdot z \ / \ (n \cdot \eta_{OV})$, где E_H — заданная минимальная нормируемая освещенность, лк; K_3 — коэффициент запаса, учитывающий снижение светового потока во времени; S — площадь помещения, M^2 ; Z — отношение E_{CP} / E_{MIN} (неравномерность освещения), N — число светильников. Затем по справочнику выбирается лампа с подходящим световым потоком.

7 В чём заключается светотехнический расчёт освещения методом удельной мощности?

Удельная мощность осветительной установки определяется по формуле

$$p_y = P_{\pi} \cdot N / S$$

где P_{Λ} — мощность одной лампы, Вт; N — число ламп; S — площадь освещаемого помещения, м².

Зная значение удельной мощности в соответствии с заданными условиями, можно определить расчётное значение требуемой мощности одной лампы, по которому выбирают лампу ближайшей стандартной мощности,

$$P_{PJI} = p_{y} \cdot S / N$$

Данные по удельной мощности для светильников прямого света с типовыми КСС приводятся в справочной литературе. В зависимости от типа ламп (ЛБ, ДРЛ или другие) по расчётной высоте и площади помещения для известной кривой силы света КСС по таблице определяется удельная мощность p_y , которая и подставляется в формулу. Затем по справочнику выбирается лампа.

8 В чём заключается светотехнический расчёт освещённости точечным методом?

1 По тангенсу угла α , образованного вертикалью и лучом $\lg \alpha = d / H_P$ где d —расстояние от расчётной точки A до вертикали, H_P — высота, определяем угол α и куб его косинуса $\cos^3 \alpha$.

2 По справочным таблицам по углу α для известной КСС определяем $I_{\pmb{a}}$ — условную (для лампы в 1000 лм) силу света светильника в точку A, кд,

3 Вычисляем условную горизонтальную освещённость в точке А

$$E'_{rA} = I_{a} \cdot \cos^{3} \alpha / (H_{P}^{2} \cdot K_{3})$$

где H_P — расчётная высота. K_3 — коэффициент запаса, учитывающий ослабление светового потока со временем.

4 Пересчитываем освещённость точки A с учётом светового потока Φ_{π} лампы, установленной в светильнике

$$E_{rA} = E'_{rA} \cdot \Phi_{II} / 1000$$

9 В чём заключается расчёт освещённости точки с помощью пространственных изолюкс?

Это упрощённый метод расчёта, при котором используются пространственные изолюксы, приводимые в справочнике для разных КСС в виде графиков зависимости условной освещённости от высоты $H_{\rm P}$ и расстояния d.

Расчёт производится в следующем порядке.

- 1. Для выбранного типа светильника в зависимости от расчётной высоты его подвеса $H_{\rm P}$ и расстояния d, определённого по плану, находят на графике ближайшую кривую, на которой указана условная освещённость. При необходимости выполняют интерполяцию..
- 2. Найденные по кривым условные освещённости от ближайших светильников для расчётной точки суммируются: $\sum e_r = e_{r1} + e_{r2} + ... + e_{rn}$.
 - 3 Находится освещённость от ламп, установленных в светильниках

$$E_{rA} = \sum e_r \Phi_{JI} / 1000$$

4. Если задана освещённость E_r и требуется определить мощность лампы, необходимую для обеспечения этой освещённости на горизонтальной поверхности, расчётное значение светового потока лампы рассчитывают по формуле

$$\Phi_{\Pi} = 1000 \cdot E_r \cdot K_3 / (\mu \cdot e_r)$$

где K_3 — коэффициент запаса, учитывающий ослабление светового потока со временем;

ц – коэффициент, учитывающий дополнительную освещённость.

10 В чём заключается расчёт освещённости от светящихся линий?

- 1 Расчётная точка разбивает светящиеся линии на полуряды. Для каждого из них определяем относительное значение длины полуряда $l'=l/H_{\rm P}$ и относительное значение расстояния от расчётной точки до полуряда $d'=d/H_{\rm P}$, где $H_{\rm P}$ расчётная высота.
- 2 По этим координатам на графике линейных изолюкс, приводимом в справочнике для известной КСС определяяем условную освещённость *е.* Это повторяется для всех полурядов, и дальних, и ближних.
 - 3 Условные освещённости всех полурядов суммируются, получаем Σe .
 - 4 Определяем необходимую линейную плотность светового потока $\Phi = E_{H} \cdot K_{3} \cdot H_{P} \cdot 1000 / (\mu \cdot \Sigma e)$, лм/м,

где $E_{\rm H}$ — нормированная освещённость;

 K_3 — коэффициент запаса;

 $\mu \approx 1,1$ — коэффициент, учитывающий отражение светового потока.

5 Выбираем светильник с Φ_{Λ} и определяем необходимое количество светильников в ряду $N_{P} = \Phi \cdot A / \Phi_{\Lambda}$

6 Определяем фактическую линейную плотность светового потока $\Phi = \Phi_{\pi} \cdot N_P / A$, лм/м

7 Определяем фактическую освещённость в расчётной точке

$$E = \Phi \cdot \mu \cdot \Sigma e / (K_3 \cdot H_P \cdot 1000)$$
, лк

11 Какие схемы используют для питания осветительных устройств? Как прокладываются осветительные сети?

Все сети освещения разделяют на питающие и групповые.

К питающей сети относят линии от трансформаторных подстанций до групповых щитков, а к групповой — линии от групповых щитков до светильников.

Щитки рабочего и аварийного освещения подключают от разных источников. Это могут быть разные линии или разные трансформаторы.

При трехфазной системе с нулевым проводом групповые линии могут быть одно-, двух- и трёхфазными. Загрузка фаз в пределах каждого щитка и линии должна быть достаточно равномерной.

Групповые электрические сети сечением до 16 мм² следует выполнять кабелями (проводами) с медными жилами.

В производственных помещениях, как правило, следует применять скрытую электропроводку. Допускается открытая прокладка кабелей.

Линии аварийного освещения допускается прокладывать как независимо от линий рабочего освещения, так и совместно с линиями рабочего освещения при выполнении особых условий прокладки.

12 Как выбрать электрооборудование для защиты сетей освещения? Как выбрать сечение проводников осветительных сетей?

Осветительные сети должны иметь защиту от токов короткого замыкания (КЗ), а в некоторых случаях также от перегрузки (требования ТКП 45-4.04-149-2009). Для защиты от перегрузки используются тепловые расцепители на биметаллических пластинках. Для защиты от коротких замыканий они дополняются электромагнитным расцепителем на основе катушки с сердечником. Получаем комбинированные автоматические выключатели.

Для защиты от поражения электрическим током при утечке через нарушенную изоляцию используется дифференциальный трансформатор. Он может дополнять автоматический выключатель в виде отдельного УЗО — устройства защитного отключения или встраиваться в него — получаем дифавтомат.

Всё это располагается в осветительных щитках.

Наименьшие сечения проводов по механической прочности для медных жил не менее $1,5\,\,\mathrm{mm}^2$, а для алюминиевых — не менее $2,5\,\,\mathrm{mm}^2$.

При выборе сечений по условиям нагрева используются таблицы допустимых токов из Правил устройства электроустановок.