
32 Реакция якоря синхронного генератора

При протекании по обмотке якоря тока нагрузки генератора создается собственное магнитное поле, которое воздействует на поле обмотки возбуждения. Влияние магнитного потока якоря Φa на поле обмотки возбуждения Φ_0 называется реакцией якоря. Эти два потока вращаются с одинаковой частотой и создают результирующий вращающийся магнитный поток Φ_{PE3} .

Под воздействием потока Φ_{α} результирующий поток Φ_{PE3} смещается относительно потока Φ_{α} на угол θ в сторону отставания.

Этот угол называют углом рассогласования (рисунок 3.7).

Пространственный угол θ: *a* – при холостом ходе; *б* – при нагрузке

Ведущим звеном при электромагнитном преобразовании энергии является дотор. т. e. полюс ротора идет впереди полюса результирующего магнитного потока СГ. При холостом ходе $\theta = 0$. При увеличении нагрузки растет электромагнитная сила, следовательно, рассогласования 0, но до некоторого растет угол предела, ограниченного мощностью приводного двигателя.

При чисто *активной нагрузке* реакция якоря поперечная, потому что магнитные линии потока Φa якоря перпендикулярны магнитным линиям потока ротора Φ_0 (рисунок 3.8, a).

При индуктивной нагрузке ток I отстает от ЭДС на 90° , и реакция якоря будет продольной размагничивающей (рисунок 3.8, δ), т. к. Φa противоположен направлению основного потока ротора Φ_{\circ} .

При *емкостной нагрузке* реакция якоря продольная подмагничивающая (рисунок 3.6, θ), т. к. Фа совпадает по направлению с основным потоком ротора Φ_0 .

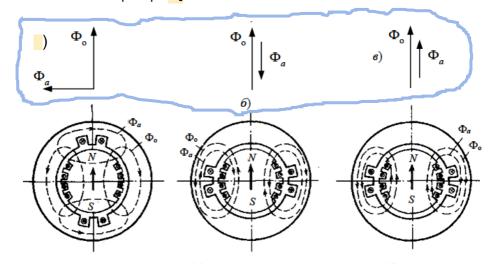


Рисунок 3.8 — Поперечная (a), продольная размагничивающая (b) и продольная намагничивающая (b) реакция якоря синхронной машины

В действительности на электростанциях имеет место смешанная, активно-индуктивная нагрузка, т. е. ток генератора включает в себя активную и индуктивную составляющие. Чем меньше составляющая активного тока, тем ниже значение коэффициента мощности.

Синхронные генераторы предназначены для работы коэффициентом мощности cosφ = 0,8. Более низкое значение коэффициента мощности в сети свидетельствует об увеличении реактивной составляющей тока нагрузки, что приводит к усилению размагничивающего действия реакции якоря и снижению напряжения зажимах генератора. Для того чтобы скомпенсировать размагничивающее действие реакции якоря при **увеличении** индуктивной нагрузки, нужно увеличить ток возбуждения в обмотке ротора. Этот ток может достигать значения, превышающего номинальное при номинальной нагрузке, что приводит к перегреву обмотки ротора СГ.

При низком коэффициенте мощности напряжение СГ будет неустойчиво, а при больших толчках индуктивной нагрузки, что бывает при пуске мощных двигателей, напряжение генератора может упасть до нуля.