34 Параллельная работа синхронных генераторов

Условия включения на параллельную работу синхронных генераторов. На электрических станциях обычно устанавливают <mark>несколько генераторов, которые</mark> отдают электрическую энергию на общие шины, т. е. работают параллельно. Если станция оборудована одним генератором, то его нагрузка сильно колеблется в зависимости от времени года и от времени суток. Замена одного генератора несколькими дает возможность при необходимости часть генераторов останавливать, экономя тем самым расход топлива, воды и т. д. Для <mark>надежного снабжения потребителей</mark> на случай аварии <mark>станция должна</mark> <mark>иметь резервный генератор.</mark> Наконец, <mark>параллельная работа генераторов</mark> диктуется необходимостью объединения энергосистему нескольких электростанций, что позволяет наиболее рационально загружать станции в течение года и бесперебойно снабжать потребителей электроэнергией.

Для включения синхронных трёхфазных генераторов на параллельную работу необходимо выполнить следующие условия:

- 1) равенство действующих значений напряжения сети $U_{\rm c}$ и напряжения (ЭДС) на зажимах генератора $U_{\rm r}$ включаемого в сеть;
- 2) напряжения сети $U_{\rm C}$ и генератора $U_{\rm F}$ в момент включения должны совпадать по фазе;
- 3) равенство частот генератора $f_{\rm r}$ и сети $f_{\rm c}$ которое достигается регулированием частоты вращения;
- 4) одинаковая последовательность чередования фаз сети и генератора.

То есть при подключении генератора к сети мгновенные значения напряжения (ЭДС) генератора должны соответствовать мгновенным значениям напряжения одноименных фаз сети.

При указанных условиях векторы напряжений генератора и сети совпадают и вращаются с одинаковой частотой.

Рассмотрим, какие явления возникают в генераторах при несоблюдении этих условий.

Если действующее значение напряжения сети U_c не равно напряжению (ЭДС) на зажимах генератора U_r , включаемого в сеть, а остальные условия выдержаны, то в обмотке генератора возникает уравнительный ток I_{yp} .

Так как активное сопротивление обмоток генератора очень мало, то можно считать, что обмотки генератора обладают только индуктивным

сопротивлением. Вследствие этого уравнительный ток в данном случае будет реактивным током.

Уравнительный ток дополнительно нагружает обмотку якоря генератора, что не даёт снимать с генератора номинальную мощность.

Неправильная синхронизация может вызвать серьезную аварию. Если, например, напряжения $U_{\rm C}$ и $U_{\rm f}$ будут в момент включения генератора в сеть сдвинуты по фазе на $180^{\rm o}$, то это эквивалентно короткому замыканию при удвоенном напряжении. Зарегистрировано немало случаев, когда неправильная синхронизация вызывала серьёзные повреждения оборудования: повреждение обмоток, поломка крепёжных деталей сердечников и полюсов, поломка вала, разрушение всего генератора.

Способы включения синхронных генераторов на параллельную работу. Для безаварийного подключения синхронного генератора на параллельную работу с сетью необходимо соблюсти ряд условий. На практике выполнение этих условий можно контролировать при помощи специальных синхронизирующих схем.

Точная синхронизация. Она может быть реализована путём включения между одноименными фазами генератора и сети ламп, рассчитанных на двойное фазное напряжение (рисунок 3.14, *a*).

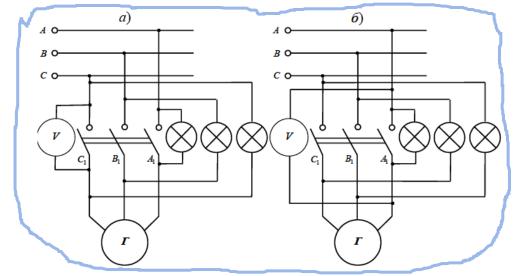


Рисунок 3.14 — Схема подключения синхронного генератора с помощью ламп: a — на погасание; δ — на вращение света

В такой схеме лампы находятся под действием разности фазных напряжений ΔU генератора и сети. При точной синхронизации, когда ΔU всех фаз равны нулю, все лампы погаснут (схема на погасание). Для более точной фиксации нулевого значения ΔU параллельно одной из ламп включается вольтметр, имеющий повышенную чувствительность на начальном участке шкалы. Если при этой схеме включения лампы будут гаснуть не одновременно, а по очереди, то это свидетельствует о том, что порядок чередования фаз неодинаков. Включать генератор на параллельную работу с сетью нужно при наименьшей частоте погасания ламп, когда лампы погаснут, а стрелка вольтметра подойдет к нулю.

Чаще для синхронизации применяют схему включения ламп «на вращение света» (рисунок 3.14, б). В этом случае одну лампу присоединяют к одноимённым фазам генератора и сети, а две другие — к разноимённым. Параллельно к лампе, присоединённой к одноименным фазам, включают нулевой вольтметр.

Генератор включают на параллельную работу в тот момент, когда вращение света прекратится, лампа, присоединённая к одноименным фазам, погаснет, стрелка нулевого вольтметра подходит к нулю, а две другие лампы горят одинаковым светом.

Нулевой вольтметр ставят для того, чтобы точнее определить разность напряжений между генератором и сетью, чего с помощью одних ламп сделать нельзя, так как при 15–20 % номинального напряжения на лампах их нити не накаливаются. Кроме ламповых, существуют также стрелочные синхроноскопы.

Самосинхронизация — более простой способ синхронизации генератора, позволяющий включить генератор на параллельную работу за короткое время даже при значительных колебаниях напряжения в сети. Сущность способа самосинхронизации состоит в том, что невозбуждённый синхронный генератор, приводимый во вращение первичным двигателем с частотой, которая может отличаться на 2–5 % от номинальной, включают в сеть, после чего в обмотке ротора начинают увеличивать ток возбуждения, и генератор втягивается в синхронизм благодаря действию электромагнитного моментов.

При включении генератора в сеть его обмотка возбуждения должна быть замкнута на сопротивление (во избежание перенапряжения в обмотке ротора). Во время включения наблюдаются броски тока статора, в несколько раз превышающие номинальный; метод самосинхронизации можно применять тогда, когда их величина не превышает $3,5 \cdot I_{\text{H}}$.

Важным условием успешной самосинхронизации является отсутствие избыточного момента на валу приводного двигателя. В противном случае ускорение ротора может стать значительным, в результате чего самосинхронизация затянется.

Частоту вращения генератора, включаемого в сеть без возбуждения, можно определить тахометром.

самосинхронизацией необходимо при Перед помощи фазоуказателя убедится, что порядок чередования фаз обоих конце синхронизации ЭДС генераторов одинаков. В значение подключаемого генератора E_0 равно напряжению сети U_c , а её частота <mark>равна частоте сети, </mark>и в дальнейшем эта частота неизменна. <mark>Так как</mark> уравнительный ток в конце синхронизации равен нулю ($E_0 = U_c$), то генератор будет работать в режиме холостого хода.