Вопросы к контрольной работе по синхронным машинам с краткими ответами

1 Принцип действия синхронных машин и их применение.

Принцип действия СМ основан на вращении магнитного поля. В генераторе это поле создаётся магнитом (электромагнитом) ротора, его силовые линии пересекают витки статорной обмотки, наводя в них ЭДС. В двигателе вращающееся магнитное поле создаётся токами, протекающими по статорной обмотке, и увлекает за собой магнит (электромагнит) ротора.

Магнитное поле и ротор вращаются с одинаковой частотой, поэтому машины называют синхронными. Синхронные машины широко применяются в народном хозяйстве как электрические генераторы и двигатели преимущественно большой мощности.

2 Классификация и устройство синхронных машин.

СМ, как и все электрические машины, обратима, т. е. она может работать как генератором, так и двигателем. Синхронная машина состоит из неподвижной части — статора, и вращающейся части — ротора.

Статор СМ состоит из чугунной станины — корпуса, внутри которого находится сердечник статора, собранный из отдельных, изолированных между собой листов электротехнической стали. В пазы сердечника укладывают обмотку статора из медного изолированного провода.

По конструкции ротора существуют СМ с явнополюсным и неявнополюсным ротором. Ток в обмотку возбуждения подается через контактные кольца и щётки. Бывают СМ с магнитоэлектрическим возбуждением (используются постоянные магниты).

3 Реакция якоря синхронного генератора.

При протекании по обмотке якоря тока нагрузки генератора создается собственное магнитное поле, которое воздействует на поле обмотки возбуждения. Влияние магнитного потока якоря Φa на поле обмотки возбуждения Φ_0 называется реакцией якоря.

При чисто активной нагрузке реакция якоря поперечная.

При *индуктивной нагрузке* ток I отстает от ЭДС на 90° , и реакция якоря будет продольной размагничивающей.

При *ёмкостной нагрузке* реакция якоря продольная подмагничивающая.

Для компенсации действия реакции якоря изменяют ток возбуждения, при активной и индуктивной нагрузке его увеличивают, при ёмкостной – уменьшают.

4 Характеристики СГ при автономной работе.

Характеристика холостого хода СГ представляет собой график зависимости напряжения на выходе генератора в режиме холостого хода от тока в обмотке возбуждения $I_{\rm B}$. При увеличении $I_{\rm B}$ напряжение растёт.

Внешняя характеристика СГ определяет зависимость U = f(I) при $I_B = \text{const}$, $\cos \varphi = \text{const}$, $f = f_H$ и показывает, как изменяется напряжение на зажимах генератора U при изменении нагрузки и неизменном токе возбуждения. При активной и индуктивной нагрузке напряжение падает.

Регулировочная характеристика определяет зависимость $I_{\rm B}=f(I)$ при $U=U_{\rm H}={\rm const}$, ${\rm cos}\phi={\rm const}$, $f={\rm const}$ и показывает, как нужно регулировать ток возбуждения синхронного генератора, чтобы при изменении нагрузки его напряжение оставалось неизменным. При активной и индуктивной нагрузке $I_{\rm B}$ нужно увеличивать.

5 Параллельная работа синхронных генераторов.

Большинство синхронных генераторов работают в параллель с сетью.

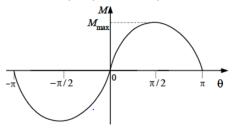
Для включения синхронных трёхфазных генераторов на параллельную работу необходимо выполнить следующие условия:

- 1) равенство действующих значений напряжения сети $U_{\rm c}$ и напряжения (ЭДС) на зажимах генератора $U_{\rm r}$ включаемого в сеть;
- 2) напряжения сети $U_{\rm c}$ и генератора $U_{\rm r}$ в момент включения должны совпадать по фазе;
- 3) равенство частот генератора $f_{\rm r}$ и сети $f_{\rm c}$ которое достигается регулированием частоты вращения;
- 4) одинаковая последовательность чередования фаз сети и генератора.

Несоблюдение может вызвать серьезную аварию и разрушение СГ.

6 Регулирование активной и реактивной мощности СГ.

Регулирование осуществляется изменением тока возбуждения. При небольших его значениях ток статорной обмотки достаточно велик, генератор потребляет из сети индуктивную мощность, Это режим недовозбуждения. По мере увеличения $I_{\rm B}$ ток статорной обмотки уменьшается, проходит минимум (режим нормального возбуждения), $\cos \varphi = 1$, и затем опять увеличивается — режим перевозбуждения — при нём генератор отдаёт в сеть ёмкостную реактивную мощность. Получается U-образная характеристика, минимум которой по мере увеличения активной нагрузки смещается в сторону больших $I_{\rm B}$.

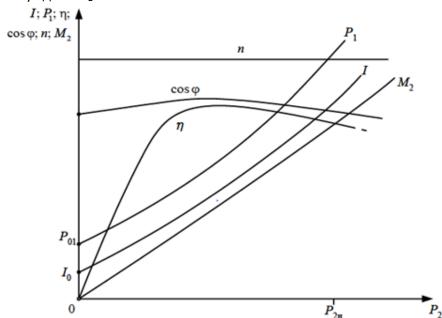

При изменении возбуждения генератора изменяется только его реактивная мощность, активная зависит от нагрузки.

7 Момент синхронного двигателя.

К статору синхронного двигателя подводят трехфазный переменный

ток, а к обмотке возбуждения ротора – постоянный. Вращающееся магнитное поле создаёт момент

 $M=3\cdot l\cdot U\cdot \cos\phi$ / $\omega_{P}=M_{MAX}\cdot \sin\Theta$, где Θ — угол рассогласования. При этом с увеличением нагрузки угол Θ увеличивается, момент возрастает



по синусоидальному закону. Если момент нагрузки превысит $M_{\text{мах}}$, то поддержание синхронной частоты вращения ротора будет невозможно и машина выпадет из синхронизма.

Вращающий момент синхронного двигателя пропорционален приложенному напряжению, а в асинхронном – квадрату напряжения.

8 Рабочие характеристики СД.

Рабочими характеристиками синхронного двигателя называют зависимости частоты вращения ротора n, тока статора I, потребляемой из сети мощности P_1 , полезного вращающего момента M_2 , коэффициента мощности соѕ ϕ и КПД η от полезной мощности на валу двигателя P_2 при постоянных значениях напряжения сети U, частоты сети f и тока возбуждения I_B .

9 Пуск синхронного двигателя.

Пуск синхронного двигателя возможен лишь при условии предварительного разгона до частоты, равной синхронной или близкой к ней. Для синхронных двигателей обычно применяется асинхронный пуск, состоящий в том, что в начале пуска двигатель разгоняется как асинхронный. Для этого на роторе размещается пусковая обмотка.

При подключении обмотки статора к сети возникает вращающееся магнитное поле, которое индуктирует токи в пусковой обмотке ротора. В результате возникает вращающий момент, и двигатель разгоняется до некоторой установившейся частоты n_0 . В процессе асинхронного пуска обмотку возбуждения нельзя оставлять разомкнутой, на период разгона ротора её замыкают на активное сопротивление, примерно в десять раз большее сопротивления обмотки возбуждения.

После разгона обмотка возбуждения отключается от сопротивления и подключается к источнику постоянного тока. В результате возникает обычный для СМ момент взаимодействия вращающегося поля статора и полюсов ротора, и СМ втягивается в синхронизм, т. е. ротор начинает вращаться синхронно с полем.

10 Синхронные машины специального назначения.

Синхронные машины с постоянными магнитами (магнитоэлектрические) на роторе, имеют не обмотку а постоянные магниты, Статор этих машин обычной конструкции с двух- или трёхфазной обмоткой.

Такие двигатели чаще всего изготовляют на небольшие мощности и применяют в приборостроении и устройствах автоматики.

Синхронные генераторы с постоянными магнитами применяют реже, главным образом в качестве автономно работающих генераторов повышенной частоты малой и средней мощности.

Шаговый (импульсный) двигатель — это электромеханическое устройство, которое преобразует импульсы напряжения в угловые или линейные дискретные (скачкообразные) перемещения (шаги). Наибольшее применение такие двигатели получили в электроприводах с программным управлением.

Синхронный реактивный двигатель — в котором момент создается за счёт неравномерной магнитной проводимости ротора вдоль продольной и поперечной осей, причем ротор не имеет ни обмоток возбуждения, ни постоянных магнитов. Его статор схож со статором обычных АД, а преимущества — простая и надёжная конструкция ротора без магнитов, низкие потери и высокая эффективность.