
42 Режим холостого хода трансформатора

Работа трансформаторов основана на явлении электромагнитной индукции. Рассмотрим её на примере однофазного двухобмоточного

трансформатора. Первичная обмотка трансформатора, имеющая w_1 витков, подключается к источнику синусоидального напряжения u_1 . К вторичной обмотке с числом витков w_2 присоединяют нагрузку с сопротивлением $z_{\rm H}$.

Начало и конец обмотки высшего напряжения (ВН) обозначают буквами *А* и *X*, обмотки низшего напряжения (НН) — буквами *а* и *х*. Первичная и вторичная обмотки однофазного трансформатора не имеют электрической связи друг с другом, и мощность из одной обмотки в другую передается электромагнитным путём.

При подключении первичной обмотки w_1 к питающей сети переменного тока промышленной частоты напряжением u_1 по ней протекает ток холостого хода i_0 . Магнитодвижущая сила w_1i_0 , положительное направление которой на рисунке, по правилу буравчика, вверх, создаёт переменное магнитное поле.

Основная часть силовых линий магнитного поля проходит по магнитопроводу, охватывая витки как первичной, так и вторичной обмоток, и образуя магнитный поток связи Φ . Небольшая часть силовых линий магнитного поля частично или полностью проходит по воздуху и немагнитным материалам проводов, образуя магнитный поток рассеяния Φ_s , который в сотни раз меньше потока связи (его силовые линии показаны пунктиром).

Пульсации магнитного потока связи Ф индуцируют в витках первичной обмотки электродвижущую силу самоиндукции e_1 = $-w_1 d\Phi/dt$. Знак «—» показывает, что когда магнитный поток нарастает $(d\Phi/dt>0)$ ЭДС самоиндукции направлена навстречу создающему его току, это учтено в направлении стрелки на схеме замещения. Во вторичной обмотке индуцируется ЭДС e_2 = $-w_2 d\Phi/dt$ такого же направления, как и в первичной, знак «—» показывает, что в рассматриваемый момент она направлена от конца обмотки к началу. В

материале сердечника также индуцируются электродвижущие силы, под действием которых протекают вихревые токи, нагревающие сердечник.

Принцип действия. При подключении к сети переменного тока первичной обмотки в ней возникает ток, который создает переменный магнитный поток. Большая часть этого потока замыкается по ферромагнитному сердечнику и пронизывает как первичную, так и вторичную обмотки. Эта часть потока называется основным потоком Ф (на рисунке показан штриховыми линиями).

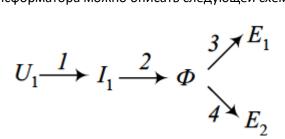
Меньшая часть потока первичной обмотки замыкается вокруг неё по воздуху и не проникает в сердечник. Этот поток называется потоком рассеяния Φ_s (на рисунке показан пунктирной линией).

Основной поток Ф, пронизывая первичную и вторичную обмотки, индуцирует в них переменные ЭДС — e_1 и e_2 , пропорциональные, согласно закону электромагнитной индукции, числу витков w_1 и w_2 соответствующей обмотки и скорости изменения потока $d\Phi/dt$. Таким образом, мгновенные значения ЭДС, индуцированные в каждой обмотке,

e₁ = – w₁ dΦ/dt; e₂ = – w₂ dΦ/dt.

При синусоидальном изменении этого потока для действующих значений этих ЭДС можно записать следующие выражения:

 $E_1 = 4,44 f w_1 \Phi_M = 4,44 f w_1 B_M Q_C; \qquad (4,44 \approx \pi \sqrt{2})$ $E_2 = 4,44 f w_2 \Phi_M = 4,44 f w_2 B_M Q_C;$


где f – частота тока в сети;

 w_1 и w_2 – число витков в первичной и вторичной обмотках;

 Φ_{M} — амплитудное значение основного магнитного потока в сердечнике; B_{M} — амплитудное значение индукции в сердечнике магнитопровода;

 Q_{c} – площадь поперечного сечения сердечника.

Обмотка, подключенная к сети, называется первичной; к другой обмотке (вторичной) подключена нагрузка. Принцип действия трансформатора можно описать следующей схемой:

На первичную обмотку подается переменное напряжение \underline{U}_1 (1), под действием которого возникает переменный ток \underline{I}_1 , создающий переменный магнитный поток Φ (2). Замыкаясь по магнитопроводу (путь с малым магнитным сопротивлением), магнитный поток пронизывает витки обмоток и по закону электромагнитной индукции наводит противоЭДС в первичной обмотке (3) и ЭДС вторичной обмотки (4).

Отношение ЭДС в первичной и вторичной обмотках называется коэффициентом трансформации трансформатора $k = E_1 / E_2 = w_1 / w_2$.

Поток рассеяния первичной обмотки Ф₅ создает в ней ЭДС рассеяния, которая отстает от потока рассеяния на угол 90°. Так как поток рассеяния замыкается по воздуху, то его значение прямо пропорционально току, создающему этот поток. Значит для ЭДС рассеяния первичной обмотки можно записать следующее выражение в комплексной форме записи

$$\underline{E}_{S1} = -jx_1 \cdot \underline{I}_1,$$

где x_1 — индуктивное сопротивление первичной обмотки; I_1 — ток первичной обмотки.