
44 Приведенный трансформатор и Т-образная схема замещения.

Рассмотрим схему замещения трансформатора

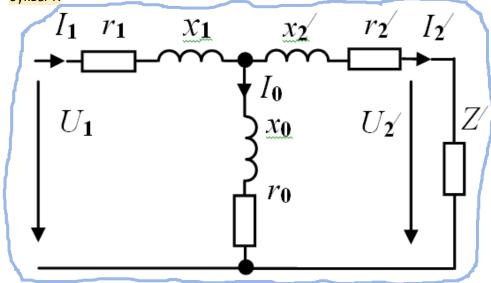
Потери в проводах, которыми выполнены обмотки, учтены на схеме замещения в виде активных сопротивлений (r_1 — первичной; r_2 — вторичной). Рассеяние магнитного потока учтено в виде индуктивности рассеяния первичной обмотки L_{51} и вторичной обмотки L_{52} . Потери при перемагничивании сердечника учтены в виде резистора R. Электродвижущие силы первичной обмотки $e_1 = -w_1 d\Phi/dt$ и вторичной обмотки $e_2 = -w_2 d\Phi/dt$ направлены вверх.

Для левой и правой частей схемы замещения можно записать два уравнения, связанных между собой через магнитный поток связи Ф

$$u_1 - r_1 i_1 - L_{s1} di_1/dt = w_1 d\Phi/dt$$
 u $w_2 d\Phi/dt - L_{s2} di_2/dt - r_2 i_2 = u_2$

Левое уравнение показывает, как изменяется напряжение при продвижении энергии от сети до магнитопровода, правое — от магнитопровода к потребителю; они связаны между собой через скорость изменения магнитного потока связи $d\Phi/dt$. Умножим второе уравнение на коэффициент трансформации $k=w_1 / w_2$, причём напряжение умножим на k, индуктивность и сопротивление умножим на k^2 , а ток разделим на k. Такая операция представляет собой приведение параметров вторичной цепи к напряжению первичной, приведенные параметры обозначаются со штрихом « $\frac{1}{2}$ »

$$u_2' = k u_2$$
; $L'_{52} = k^2 L_{52}$; $r_2' = k^2 r_2$; $i_2' = i_2/k$


После приведения второе уравнение приобретает вид

$$w_1 d\Phi/dt - L'_{s2} di_2/dt - r_2/i_2 = u_2/2$$

Подставим левую часть первого уравнения в приведенное второе

$$u_1 - r_1 i_1 - L_{s1} di_1 / dt - L_{s2} di_2 / dt - r_2 i_2 = u_2$$

Уравнение получилось чисто электрическим. Приведение параметров вторичной обмотки к напряжению первичной позволяет условно заменить магнитную связь между обмотками на электрическую, а на схеме замещения электрически соединить эти обмотки в форме буквы Т.

T-образная схема замещения приведенного трансформатора содержит:

- сопротивления проводов обмоток, первичной r_1 и вторичной $r_2' = k^2 r_2$;
- индуктивные сопротивления первичной $x_1=\omega L_{s1}$ и вторичной $x_2'=k^2$ $x_2==k^2\omega L_{s2}$ обмоток, учитывающие магнитные потоки рассеяния;
- ветвь перемагничивания сердечника, состоящую из индуктивного сопротивления x_0 , учитывающего магнитный поток связи, и активного сопротивления r_0 , учитывающего потери от гистерезиса и вихревых токов.