46 Опыты холостого хода и короткого замыкания

Опыт холостого хода проводится для определения коэффициента трансформации и параметров поперечной намагничивающей ветви Тобразной схемы замещения. Схема электрической цепи для проведения опыта XX представлена на рисунке 1.7. Экспериментально коэффициент трансформации можно определить только по результатам измерения напряжений в режиме XX. Это объясняется тем, что только при холостом ходе, когда ток /2 вторичной обмотки отсутствует, напряжение на выходе трансформатора равно ЭДС во вторичной обмотке E2.

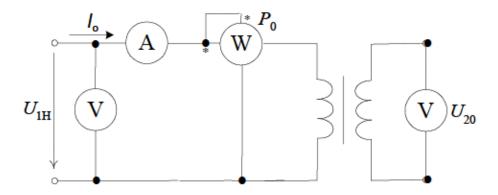


Рисунок 1.7 – Схема опыта холостого хода

По первичной обмотке в режиме холостого хода протекает очень малый ток $I_1 = I_0$, вызывающий незначительное падение напряжения $I_1 z_1$ на сопротивлении первичной обмотки трансформатора. Поэтому можно считать, что $U_1 \approx E_1$.

На основании вышеизложенного, коэффициент трансформации трансформатора, определяемый в ходе проведения опыта холостого хода, $k = E_1 / E_2 \approx U_{1H} / U_{20}$.

Так как в режиме холостого хода во вторичной обмотке тока нет, а по первичной протекает незначительный ток, то потерями в обмотках можно пренебречь. Эти потери зависят от квадрата тока и сопротивления обмоток. Следовательно, можно считать, что вся активная мощность P_0 , потребляемая трансформатором в опыте холостого хода и измеряемая ваттметром, идет на покрытие потерь в магнитопроводе.

При определении параметров намагничивающей ветви схемы замещения трансформатора учитывается тот факт, что у реальных

трансформаторов $r_1 << r_0$ и $x_1 << x_0$. Приведенные неравенства позволяют пренебречь влиянием r_1 и x_1 на значение тока холостого хода, протекающего в левом контуре схемы замещения трансформатора и определить приблизительные значения параметров намагничивающей ветви.

Активное сопротивление намагничивающей ветви $r_0 = P_0 / I_0^2$. Полное сопротивление намагничивающей ветви $z_0 = U_{1H} / I_0$. Реактивное сопротивление намагничивающей ветви x_0

$$x_0 = \sqrt{z_0^2 - r_0^2} \ .$$

Для новых и отремонтированных трансформаторов проводят опыт <mark>короткого замыкания</mark>. В этом опыте, <mark>при замкнутых выводах вторичной</mark> обмотки, на первичную подают такое пониженное напряжение U_{κ} , при котором по первичной обмотке трансформатора начинает протекать номинальный ток I_{1H} . Такое напряжение называется напряжением короткого замыкания трансформатора. При напряжении $U_{\rm K}$ измеряется Рк, потребляемая ИЗ сети. активная мощность силовых трансформаторах величина $U_{\rm K}$ обычно составляет 5–10 % от $U_{\rm 1H}$, при этом, чем больше мощность трансформатора, тем меньше процент. На практике напряжение короткого замыкания приводится в процентах,

$$u_{\rm K\%} = U_{\rm K} / U_{\rm 1H} \cdot 100 \%$$
.

Опыт короткого замыкания позволяет определить потери в обмотках трансформатора при номинальных токах и рассчитать их сопротивления в схеме замещения $(r_1, r'_2 \text{ и } x_1, x'_2)$. При определении $r_1, r'_2 \text{ и } x_1, x'_2$ учитывается тот факт, что у реальных трансформаторов $r_1 = r'_2 << r_0$ и $x_1 = x'_2 << x_0$. В опыте КЗ приведенные неравенства позволяют пренебречь током I_0 , протекающим в намагничивающей ветви схемы замещения трансформатора и перейти к упрощенной Г-образной схеме. В этом случае можно считать что ток I_{1H} , потребляемый из сети в опыте КЗ определяется только подводимым напряжением U_{K} и значениями r_{K} и x_{K} .

Активное сопротивление короткого замыкания $r_{\rm K} = P_{\rm K} / I_{\rm 1H}^2$. Полное сопротивление короткого замыкания $z_{\rm K} = U_{\rm K} / I_{\rm 1H}$.

Реактивное сопротивление короткого замыкания

$$x_{\mathbf{k}} = \sqrt{z_{\mathbf{k}}^2 - r_{\mathbf{k}}^2} .$$

Активное сопротивление обмоток $r_1 = r'_2 = r_K / 2$. Реактивное сопротивление обмоток $x_1 = x'_2 = x_K / 2$.

При определении потерь в обмотках трансформатора учитывается тот факт, что в опыте короткого замыкания $U_{\rm K} << U_{\rm 1H}$. Малое значение напряжения на первичной обмотке создает пропорционально низкое значение магнитной индукции в магнитопроводе трансформатора.

Так как <mark>потери в магнитопроводе</mark> очень сильно зависят от значения магнитной индукции в нём, то в опыте короткого замыкания они настолько малы, что ими можно пренебречь. Следовательно, <mark>вся</mark> мощность P_{κ} , потребляемая из сети в опыте короткого замыкания и измеряемая ваттметром, идет на покрытие потерь трансформатора при номинальном токе. Потери В обмотках пропорциональны квадрату тока и сопротивлению обмоток.