49 Трёхфазные трансформаторы, группы соединения обмоток. Параллельная работа трансформаторов

Трёхфазный ток обычно преобразуют с помощью трёхстержневых трёхфазных трансформаторов.

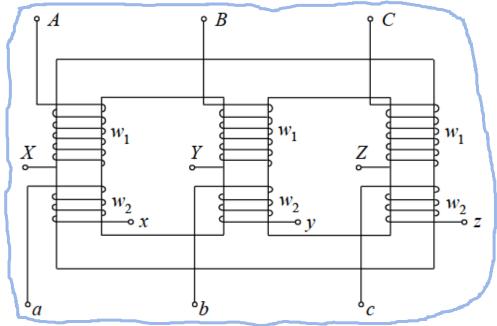


Рисунок 1.17 – Трехфазный трехстержневой трансформатор

В трёхфазном трёхстержневом трансформаторе первичная и вторичная обмотки каждой фазы расположены на общем стержне. Недостатком указанного трансформатора является то, что ток холостого хода фазы *B*, обмотка которой лежит на среднем стержне, меньше, чем в фазах *A* и *C*. Это объясняется тем, что путь магнитного потока в фазе *B* короче, и МДС для неё требуется меньшая, чем для фаз *A* и *C*.

Сердечник трёхфазного трансформатора состоит из трёх стержней, с двух сторон соединённых ярмом. На каждом стержне уложена секция первичной и вторичной обмоток. Секции первичных обмоток обозначаются A-X, B-Y, C-Z, секции вторичных — соответственно a-x, b-y, c-z. Первичные обмотки соединяются звездой либо треугольником и подключаются к симметричной цепи питающих напряжений. По ним протекают первичные токи I14, I18 и I16, создающие магнитные потоки в

стержнях Φ_A , Φ_B и Φ_C , изменяющиеся по синусоидальному закону. Магнитные потоки сдвинуты по фазе на 120° и образуют симметричную систему, сумма мгновенных значений магнитных потоков равна нулю. Во вторичных обмотках наводятся ЭДС, одинаковые по величине, но сдвинутые по фазе на 120° . Вторичные обмотки соединяются звездой либо треугольником, к ним подключаются потребители.

Мощность трёхфазного трансформатора $S = \sqrt{3} \cdot U_1 I_1 \approx \sqrt{3} \cdot U_2 I_2$.

Из-за того, что возможны различные схемы соединения обмоток, различают фазный и линейный коэффициенты трансформации.

Фазный коэффициент трансформации равен отношению числа витков первичной и вторичной обмоток $\frac{k_{\phi} = W_1/W_2}{k_{\phi}}$.

Линейный коэффициент трансформации равен отношению значений первичного и вторичного линейных напряжений $\frac{k}{k} = \frac{U_1}{U_{20}}$.

Всего возможны 4 варианта соединения обмоток: Y/Y, Δ/Δ , Y/ Δ , Δ/Y . 1-й вариант. При соединении обмоток Y/Y коэффициент $k=k_{\Phi}$ (рисунок 28).

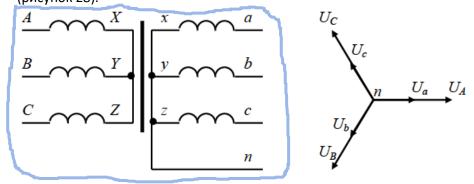
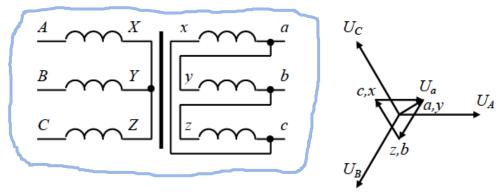
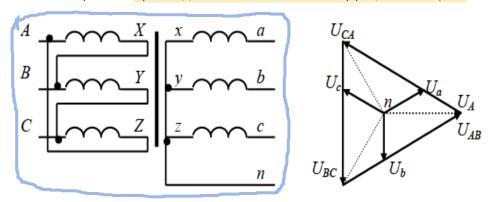




Рисунок 28 — Схема соединения Y/Y и векторная диаграмма напряжений 2-й вариант. Соединение обмоток Δ/Δ из-за ряда недостатков не применяется, и мы его рассматривать не будем.

3-й вариант. При соединении обмоток Y/Δ коэффициент $k = \sqrt{3} \cdot k_{\Phi}$

4-й вариант. При соединении обмоток Δ/Y коэффициент $k = k_{\Phi}/\sqrt{3}$

Параллельная работа трансформаторов. На практике трансформаторы могут включаться на параллельную работу, что позволяет:

- решить проблему резервирования электроснабжения потребителей;
 - отключить часть трансформаторов при уменьшении нагрузки;
 - упростить организацию профилактического ремонта и пр.

Для включения трансформаторов на параллельную работу необходимо выполнение следующих условий:

- а) равенство коэффициентов трансформации , $k_1 = k_2$;
- б) равенство напряжений короткого замыкания, $u_{\text{K1}} = u_{\text{K2}}$;
- в) равенство групп соединения трансформаторов.

Рекомендуется, чтобы отношение номинальных мощностей трансформаторов, включаемых на параллельную работу, не превышало 3:1.

Включение в сеть трансформаторов следует производить только при согласованном порядке чередования фаз.